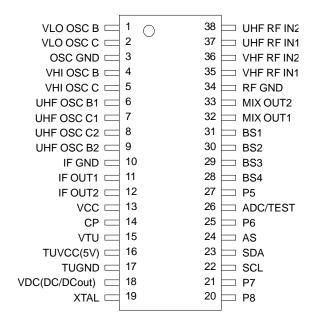


TV/VCR TUNER IC WITH DC/DC CONVERTER


FEATURES

- Single Chip Mixer/Oscillator, Synthesizer, and 30-V DC/DC Converter for Tuning Amplifier
- VHF-L, VHF-H, UHF 3-Band Local Oscillator
- I²C Bus Protocol
- Four Data Bytes Transmission
- Low Noise DC/DC Converter
- 4ch NPN Emitter Follower Type Band Switch Drivers
- 4ch NPN Open Collector Type Ports
- Programmable Reference Divider Ratio (31.25 kHz, 50 kHz, or 62 kHz)
- 5-V Power Supply
- 38-Pin TSSOP Package

DESCRIPTION

The SN761677 is a single-chip synthesized tuner IC designed for TV/VCR tuning systems. The circuit consists of a PLL synthesizer, 3-band local oscillators and mixer, 30-V dc/dc converter for tuning the amplifier, four NPN emitter follower band drivers, four NPN open collector ports, and is available in a small package outline. The 15-bit programmable counter and reference divider are controlled by I²C bus control. Tuning step frequency is selectable by the reference divider ratio for a 4-MHz Xtal oscillator.

DA PACKAGE (TOP VIEW) 38-PIN TSSOP (DA)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TEXAS INSTRUMENTS

SLES066A - DECEMBER 2002

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted (1)

		UNIT
Supply voltage (2), V _{CC}	VCC, TUVCC	–0.4 V to 7 V
Input voltage 1 ⁽²⁾ , V _{GND}	RF GND, OSC GND, TUGND	-0.4 V to 0.4 V
Input voltage 2 ⁽²⁾ , V _(VTU)	VTU (4)	-0.4 V to 35 V
Input voltage 3 (2), V _{IN}	Other input pins	–0.4 V to 7 V
Continuous total dissipation (3), PD	T _A ≤ 25°C	1168 mW
Operating free-air temperature, T _A		−20°C to 85°C
Storage temperature range, T _{Stg}		-65°C to 150°C
Maximum junction temperature, T _J		150°C
Maximum lead temperature 1,6 mm (1/16	nch) from case for 10 seconds	260°C
Maximum short circuit time, t _{SC(max)}	All pins to VCC/TUVCC, IFGND, OSCGND, RFGND, TUGND	10 sec

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) Voltage values are with respect to the IF GND of the circuit.
- (3) Derating factor is 9.34 mW/ $^{\circ}$ C for T_A \leq 25 $^{\circ}$ C.
- (4) 30 V max, when input from external power supply.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	V
Band switch driver source current, I _{BS}	One port on			10	mA
NPN port sink current, INPN	One port on		-10	-15	mA
Operating free-air temperature, T _A		-20		85	°C

CAUTION:

It is advised that precautions be taken to avoid damage due to high static voltages or electrostatic fields while handling this device. UHF OSC (pins 6–9) can withstand 1.5 kV and all other pins can withstand 2 kV, according to the Human Body Model (1.5 k Ω , 100 pF).

ELECTRICAL CHARACTERISTICS

 $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $T_A = -20^{\circ}\text{C}$ to 85°C (unless otherwise noted)(1)

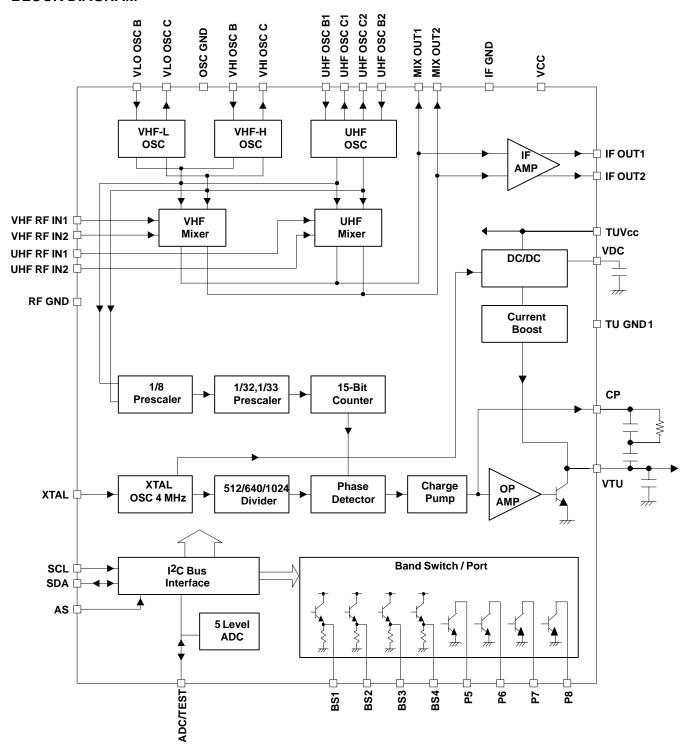
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Total Devic	e and Serial Interface		II.		<u> </u>	
ICC1	Supply current 1 (VCC)			75	95	mA
I _{CC} 2	Supply current 2 (VCC)	One band switch on (IBS = 10 mA)		85	105	mA
ICC3	Supply current 3 (TUVCC)	I _{VDC} = 50 μA		4	10	mA
VIH	High-level input voltage (SCL, SDA)		3			V
V _{IL}	Low-level input voltage (SCL, SDA)				1.5	V
I _{IH}	High-level input current (SCL, SDA)				10	μΑ
I _{IL}	Low-level input current (SCL, SDA)		-10			μΑ
VPOR	Power-on reset supply voltage	Threshold of supply voltage between reset and operation mode	2.1	3.7	4	V
DC/DC Con	verter					
VO(VDC)	Output voltage (VDC)	I _{VDC} = 50 μA		35		V
IC(VDCM)	Output current (VDC)			230		μΑ
t _S	Output settling time (VDC)	From $V_{TUVCC} > 4.5 \text{ V to } V_{O(VDC)} < 28 \text{ V}$		100		ms
I ² C Interfac	e					
VASH	Address select high-input voltage (AS)	V _{CC} = 5 V	4.5		5	V
VASM	Address select mid-input voltage (AS)	V _{CC} = 5 V	2		3	V
VASL	Address select low-input voltage (AS)	V _{CC} = 5 V			0.5	V
I _{ASH}	Address select high-input current (AS)				10	μΑ
IASL	Address select low-input current (AS)		-10			μΑ
V _I (ADC)	ADC input voltage	See Table 9	0		Vcc	V
IH(ADH)	ADC high-level input current	VI(ADC) = VCC			10	μΑ
IIL(ADL)	ADC low-level input current	VI(ADC) = 0 V	-10			μΑ
V _{OL}	Low-level output voltage (SDA)	V _{CC} = 5 V, I _{OL} = 3 mA			0.4	V
I _{lkg} (SDA)	High-level output leakage current (SDA)	V _{SDA} = 5.5 V			10	μΑ
FSCL	Clock frequency (SCL)			100	400	kHz
th(DAT)	Data hold time	See timing chart in Figure 1	0			μs
t _{BUF}	Bus free time		1.3			μs
th(STA)	Start hold time		0.6			μs
th(low)	SCL low hold time		0.6			μs
th(lhigh)	SCL high hold time		0.6			μs
t _{su(STA)}	Start setup time		0.6			μs
t _{su(DAT)}	Data setup time		0.1			μs
t _r	SCL, SDA rise time				0.3	μs
tf	SCL, SDA fall time				0.3	μs
t _{su(STO)}	STOP setup time		0.6			μs

ELECTRICAL CHARACTERISTICS (Continued) $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, T_A = -20 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C} \text{ (unless otherwise noted)}^{(1)}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
PLL and NPN I	Port		•			
		14-bit frequent word	256		16383	
N	Divider ratio	15-bit frequent word	256		32767	
FXTAL	Crystal oscillator	Rxtal = 25Ω to 300Ω		4		MHz
Z _{XTAL}	Crystal oscillator input impedance	V _{CC} = 5 V, T _A = 25°C		2.3		kΩ
VXTALIN	External crystal oscillator input amplitude		400			mV _{p-p}
VO(TU)	Tuning amplifier low-level output voltage	$R_L = 27 \text{ k}\Omega$		0.4	0.7	V
IH(CPH)	Charge pump high-level input current	CP = 1		40		μΑ
IIL(CPH)	Charge pump low-level input current	CP = 0		10		μΑ
VO(CP)	Charge pump output voltage	In lock		1.95		V
llkg(CPOFF)	Charge pump leakage current	$T2 = 0$, $T1 = 1$, $V_{O(CP)} = 2$ V, $T_{A} = 25$ °C	-15		15	nA
I _{BS}	Band switch driver source current				10	mA
VO(SBS1)	Donal avritale driven avritavativalita av	I _{BS} = 10 mA	3			V
VO(SBS2)	Band switch driver output voltage	$I_{BS} = 10 \text{ mA}, \ V_{CC} = 5 \text{ V}, \ T_{A} = 25^{\circ}\text{C}$	3.5	3.9		V
I _{lkg} (BSOFF)	Band switch driver leakage current	V _{BS} = 0 V			3	μΑ
I _{NPN}	NPN port sink current				-15	mA
VO(SN1)	NIDNI port quitruit voltore	ΙΝΡΝ = 100 μΑ			0.2	V
VO(SN2)	NPN port output voltage	$I_{NPN} = 10 \text{ mA}$			0.5	V
l _{lkg} (NPNOFF)	NPN port leakage current	V _{CC} = 5.5 V, V _{NPN} = 1.5 V			1	μΑ

ELECTRICAL CHARACTERISTICS

 $V_{CC} = 5 \text{ V}$, $T_{A} = -25^{\circ}\text{C}$, measured in reference measurement circuit at 50- Ω system, IF filter characteristics: $f_{peak} = 43 \text{ MHz}$; (unless otherwise noted)(1)


	PARAMETER	CONDITION	MIN	TYP	MAX	UNIT	
MIXER, O	SCILLATOR, IF AMPLIFIER	•					
G _{c1}	Conversion rais (raison IF applified) \(\(\text{IF law} \)	Fin = 58 MHz ₍₁₎	00	00	9	4D	
G _{c3}	Conversion gain (mixer~IF amplifier) VHF low	F _{in} = 130 MHz	23	26	29	dB	
G _{c4}	Occupation as in (arises IF and ICar) (IF bish	Fin = 136 MHz ₍₁₎	00	00	20	-ID	
G _{c6}	Conversion gain (mixer~IF amplifier) VHF high	Fin = 364 MHz	23	26	29	dB	
G _{c7}	Conversion rais (raison IF anniifiae) \/ IF IIIF	Fin = 370 MHz ₍₁₎	24	27	00	dB	
G _{c9}	Conversion gain (mixer~IF amplifier) VHF–UHF	Fin = 804 MHz	24	21	30	ав	
NF ₁	Naise George VIIIE Issue	F _{in} = 55.25 MHz		44		-ID	
NF ₃	Noise figure VHF low	F _{in} = 127.25 MHz		11		dB	
NF ₄	N : C	F _{in} = 133.25 MHz		4.4			
NF ₆	Noise figure VHF high	F _{in} = 361.25 MHz		11		dB	
NF ₇	Notes Community	F _{in} = 367.25 MHz		10		-ID	
NF ₉	Noise figure UHF	F _{in} = 801.25 MHz		11		dB	
CM ₁	100 100 100 100 100 100 100 100 100 100	F _{in} = 55.25 MHz ⁽²⁾				15.17	
CM ₃	1% cross modulation distortion VHF low	F _{in} = 127.25 MHz		89		dΒμV	
CM ₄		F _{in} = 133.25 MHz ⁽²⁾					
CM ₆	1% cross modulation distortion VHF high	F _{in} = 361.25 MHz		86		dΒμV	
CM ₇		F _{in} = 367.25 MHz ⁽²⁾		87			
CM ₉	1% cross modulation distortion UHF	F _{in} = 801.25 MHz		86		dΒμV	
VO(IF1)	15	F _{in} = 55.25 MHz ₍₃₎				15.17	
V _{O(IF3)}	IF output voltage VHF low	F _{in} = 127.25 MHz		117		dΒμV	
V _{O(IF4)}	15	F _{in} = 133.25 MHz ₍₃₎				ID 1/	
VO(IF6)	Foutput voltage VHF high	F _{in} = 361.25 MHz		117		dΒμV	
VO(IF7)		F _{in} = 367.25 MHz ₍₃₎				ID 1/	
VO(IF9)	F output voltage UHF	F _{in} = 801.25 MHz		117		dΒμV	

⁽¹⁾ IF = 43 MHz, RF input level = $80 \text{ dB}\mu\text{V}$

⁽²⁾ F_{undes} = F_{des} \pm 6 MHz, pin = 80 dB μ V, AM 1 kHz, 30%, DES/CM = S/I = 46 dB (3) IF = 45.75 MHztop

BLOCK DIAGRAM

Terminal Functions

TERMIN	IAL		
NAME	NO.	DESCRIPTION	
VLO OSC B	2	VHF low oscillator input base VHF low oscillator output collector	2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
OSC GND	3	Oscillator ground	
VHI OSC B	5	VHF hi oscillator input base VHF hi oscillator output collector	(5) 3k 3k 3k
UHF OSC B1	6	UHF oscillator input base1	T T
UHF OSC C1	7 8	UHF oscillator output collector1 UHF oscillator output collector2	9 4 5 6
UHF OSC B2	9	UHF oscillator input base2	3k
IF GND	10	IF ground	
IF OUT2	11	IF output IF output	
VCC	13	Supply voltage for mixer/oscillator/PLL: 5 V	

TERMINAL		DEGODIPTION	
NAME	NO.	DESCRIPTION	
СР	14	Charge pump output	(5) W + VDC1
VTU	15	Tuning voltage amplifier output	
TUVCC	16	Supply voltage for DC/DC converter: 5 V	
TUGND	17	DC/DC converter ground	
VDC	18	DC/DC converter monitor output. (Do not connect to other terminals or circuits except for the capacitor.)	VDC1
XTAL	19	4-MHz crystal oscillator input	
P8	20	Port 8 output (NPN open collector)	(20)
P7	21	Port 7 output (NPN open collector)	21)
P6	25	Port 6 output (NPN open collector)	
P5	27	Port 5 output (NPN open collector)	<i>h</i> (21)
SCL	22	I ² C serial clock input	
SDA	23	I ² C serial data input/output	23
AS	24	I ² C address set input	
ADC/TEST	26	ADC input / test output	

TERMINAL		DECODIDETON	
NAME	NO.	DESCRIPTION	
BS4	28	Band switch4 output (NPN emitter follower)	J
BS3	29	Band switch3 output (NPN emitter follower)	28 (29)
BS2	30	Band switch2 output (NPN emitter follower)	50k \$ 30
BS1	31	Band switch1 output (NPN emitter follower)	<i>h</i> (31)
MIX OUT1	32	Mixer output	5p <u>1</u> 32
MIX OUT2	33	Mixer output	
RF GND	34	RF ground	
VHF RF IN1	35	VHF RF input	35 3k 36
VHF RF IN2	36	VHF RF input	
UHF RF IN1	37	UHF RF input	37 38 38 m
UHF RF IN2	38	UHF RF input	

FUNCTION DESCRIPTION

The device can be controlled according to the I^2C bus format.

Table 1. Serial Interface Function

PIN	PIN NAME	DESCRIPTION
22	SCL	Clock input
23	SDA	Datainput/output
24	AS	Address selection input
26	ADC/TEST	ADC input, test output

I^2C Write Mode (R/W = 0)

Table 2. Write Data Format

	MSB							LSB	
Address byte (ADB)	1	1	0	0	0	MA1	MA0	R/W=0	Α
Divider byte 1 (DB1)	0	N14	N13	N12	N11	N10	N9	N8	Α
Divider byte 2 (DB2)	N7	N6	N5	N4	N3	N2	N1	N0	Α
Control byte (CB)	1	СР	T2	T1	T0	RSA	RSB	os	Α
Ports byte (PB)	P8	P7	P6	P5	BS4	BS3	BS2	BS1	Α

Table 3. Description of Data Symbol

SYMBOL	DESCRIPTION	DEFAULT
MA1, MA0	Address set bits (See Table 4)	
N14N0	Programmable counter set bits N=N14x2^14+N13x2^13++N1x2+N0	Nn=0
СР	Charge pump current set bit 10 μA (CP=0) 40 μA (CP=1)	CP=1
T2, T1, T0	Test bits (See Table 5) Normal mode: T2=0, T1=0, T0=1/0	T2=0, T1=0, T0=0
RSA, RSB	Reference divider ratio selection bits (See Table 6)	RSA=0, RSB=1
os	Tuning amplifier control bit Tuning voltage ON (OS=0) Tuning voltage OFF, high impedance (OS=1)	OS=0
BS4BS1	Band switch ports control bits BSn=0:Tr=OFF BSn=1:Tr=ON Band selection by BS1, 2, 4 (x: don't care) BS1 BS2 BS4 VHF-Lo 1 0 0 VHF-Hi x 1 0 UHF x x 1	BSn=0
P8P5	NPN open collector ports control bits Pn=0: Tr=OFF Pn=1: Tr=ON	Pn=0
Χ	Don't care	

NOTE: A: Acknowledge

Table 4. Address Selection

VOLTAGE APPLIED ON AS INPUT	MA1	MA0
0 V to 0.1 V _{CC}	0	0
Always valid	0	1
0.4 V _{CC} to 0.6 V _{CC}	1	0
0.9 VCC to VCC	1	1

Table 5. Test Blts

T2	T1	T0	FUNCTION	
0	0	0	Normaloperation	Default
0	0	1	Normaloperation	
0	1	Х	Charge pump off	
1	1	0	Charge pump sink	
1	1	1	Charge pump source	
1	0	Х	Test mode	Not available ADC

Table 6. Ratio Select Bits

RSA	RSB	REFERENCE DIVIDER RATIO
Х	0	640
0	1	1024
1	1	512

I^2C Read Mode (R/W = 1)

Table 7. Read Data Format

	MSB							LSB	
Address byte (ADB)	1	1	0	0	0	MA1	MA0	R/W=1	Α
Status byte (SB)	POR	FL	1	1	1	A2	A1	A0	Α

NOTE: A: Acknowledge

Table 8. Description of Data Symbol

SYMBOL	DESCRIPTION	DEFAULT
MA1, MA0	Address set bits (see Table 4)	
POR	Power-on reset flag POR Set: Power on POR Reset: End-of-data transmission procedure	POR=1
FL	In-lock flag PLL lock (FL=1) Unlock (FL=0)	
A2A0	Digital data of ADC (see Table 9)	

Table 9. ADC Level

VOLTAGE APPLIED ON ADC INPUT	A2	A1	Α0
0.6 VCC to VCC	1	0	0
0.45 V _{CC} to 0.6 V _{CC}	0	1	1
0.3 V _{CC} to 0.45 V _{CC}	0	1	0
0.15 V _{CC} to 0.3 V _{CC}	0	0	1
0 V _{CC} to 0.15 V _{CC}	0	0	0

(1) Accuracy is 0.03 x V_{CC}.

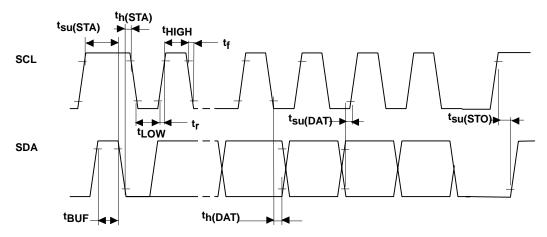
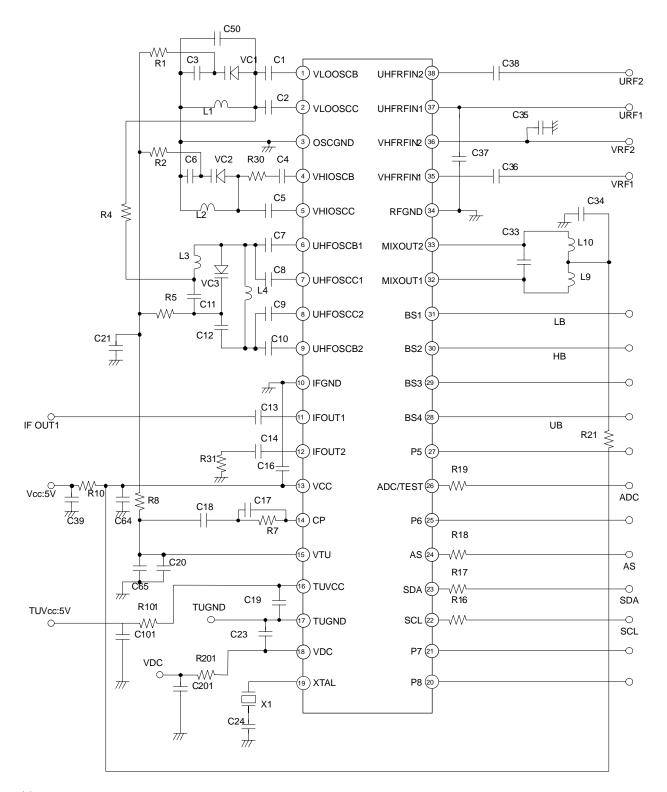



Figure 1. I²C Timing Chart

APPLICATION INFORMATION

⁽¹⁾ It is recommended that designers be careful with the PCB layout and coupling to minimize the effects of the higher harmonics of Xtal oscillation from the dc/dc converter section (pin 16–20) to mixer and oscillator section.

Figure 2. Reference Measurement Circuit

COMPONENT VALUES FOR MEASUREMENT CIRCUIT (TENTATIVE)

PART NAME	VALUE			
C1, C2, C4	1 pF			
C3	47 pF			
C5	1.5 pF			
C6	56 pF			
C7-C10	1 pF (axial ceramic)			
C11	100 pF			
C12	13 pF (axial ceramic)			
C13, C14, C16, C17, C19–C21, C34–C39, C64, C101	2.2 nF			
C18, C23	0.047 μF			
C24	68 pF			
C33	18 pF			
C41, C60, C62, C201	Not mounted			
C50	3 pF			
R1 , R2, R4, R5, R8	33 kΩ			
R7	100 kΩ			
R10, R21, R101, R201	0 Ω			
R16–R19	330 Ω			
R30	20 Ω			
R31	50 Ω			
L1	2.6φ, 8T, wire 0,3 mm			
L2	2.4φ, 4T, wire 0,4 mm			
L3	2.8φ, 2T, wire 0,4 mm			
L4	2.1φ, 3T, wire 0,4 mm			
L9, L10	2.5φ, 16T, wire 0,25 mm			
VC1, VC2, VC3	1T363A			
X1	4 MHz			

TEST CIRCUIT

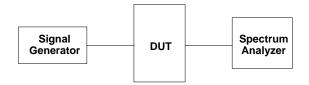



Figure 3. Measurement Circuit of Conversion Gain

Figure 4. Noise Figure Measurement Circuit

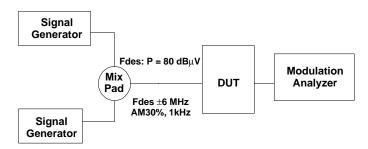


Figure 5. 1% Cross Modulation Distortion Measurement Circuit

S-PARAMETER

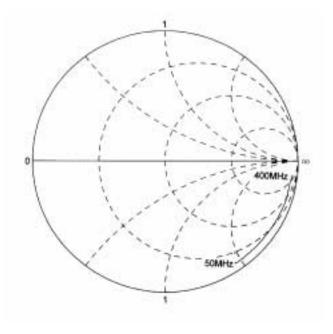


Figure 6. VHF Input

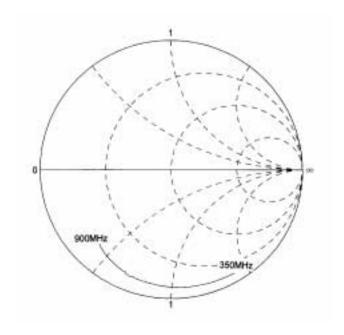


Figure 7. UHF Input

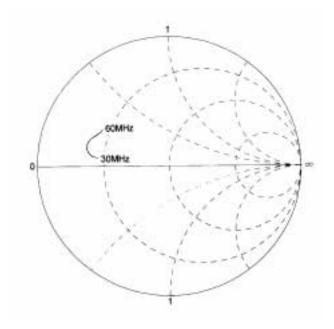


Figure 8. IF Output

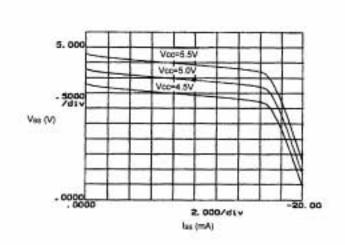
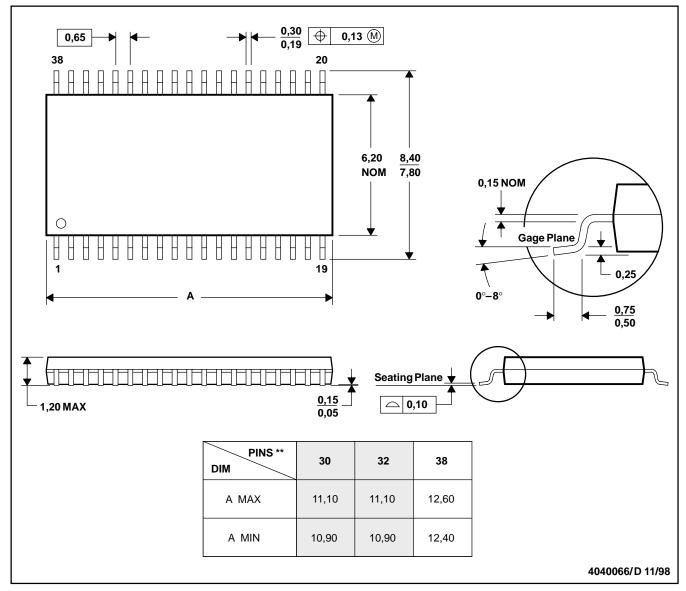


Figure 9. Band Switch Driver Output Voltage (BS1-BS4)



MECHANICAL DATA

DA (R-PDSO-G**)

38 PINS SHOWN

PLASTIC SMALL-OUTLINE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion.
 - D. Falls within JEDEC MO-153

ti.com 20-May-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN761677DA	ACTIVE	TSSOP	DA	38		TBD	Call TI	Call TI
SN761677DAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
SN761677DARG4	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
SN761677DBTR	PREVIEW	TSSOP	DBT	38		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

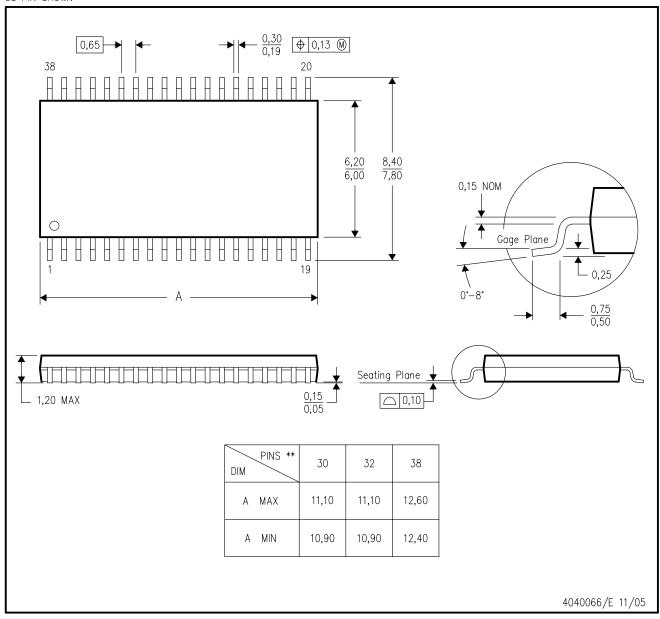
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

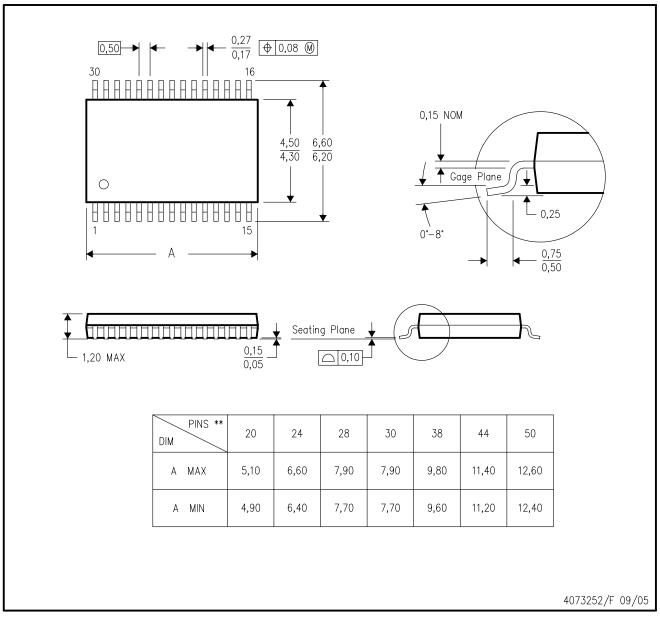
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DA (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

38 PIN SHOWN

NOTES:


- A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-153

DBT (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

30 PINS SHOWN

NOTES:

- A. All linear dimensions are in millimeters.
- 3. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-153 except 44 pin package length.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated